Física teórica 1982-1990 Marcos Mosinsky
Material type:
TextLanguage: Español Language: Inglés Publication details: México : EL COLEGIO NACIONAL. 2008Edition: 1a ediciónDescription: 576 páginas : Gráficas, fórmulas y tablas : 24 cmISBN: - 9786077630166
- QC776 M67574
| Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|---|
|
|
CI Tlalpan Sala General | Colección General | QC776 M67574 | 1 | No para préstamo externo | *0963* |
Incluye referencias bibliográficas.
CONTENIDO
Introducción al tomo 8, por Octavio Novaro Peñalosa ................ xiii
Does accidental degeneracy imply a symmetry group?
(con C. Quesne, 1983) .............................................................. 1
Relativistic collective variables for many-body systems (P. O. Hess,
M. Moshinsky, W. Greiner, G. Schmidt, 1982) ........................ 29
Accidental degeneracies and symmetry groups (1983) ................ 35
SU(3) and SU(5) dynamical symmetries in the extended interacting
boson model (Sun Hong-Zhou, M. Moshinsky, A. Frank,
P. van Isacker, 1983) ............................................................ 45
A hidden symmetry in collective excitations of many-body systems
(con O. Castaños y A. Frank, 1983) .......................................... 73
Collectivity and geometry I. General approach (1984) ................ 81
Collectivity and geometry II. The two dimensional case
(E. Chacón, P. Hess, M. Moshinsky, 1984) .............................. 91
Collectivity and geometry III. The three-dimensional case
in the Sp(6) ⊃ Sp(2) × O(3) chain for closed shells
(O. Castaños, E. Chacón, M. Moshinsky, 1984) ..................... 103
Geometry of nuclear collective motions (1984) ........................ 115
Analytic expressions for the matrix elements of generators
of Sp(6) in an Sp(6) ⊃ U(3) basis (O. Castaños,
E. Chacón, M. Moshinsky, 1984) ........................................... 123
Accidental degeneracies in the Zeeman effect and the symmetry groups
(con N. Méndez, E. Murow y J. W. B. Hughes, 1984) .............. 131
Pseudoatoms and atoms in strong magnetic fields (con N. Méndez
y E. Murow, 1985) .................................................................... 169
Symmetry constrained bosons and collectivity (1984) ................ 197
Constrained bosons for collective states in open shell nuclei
(con E. Chacón y O. Castaños, 1984) ..................................... 213
Boson realization of sp(4) I. The matrix formulation (O. Castaños,
E. Chacón, M. Moshinsky, C. Quesne, 1985) ........................... 223
Boson realization of symplectic algebras (1985) ..................... 241
Are there boson degrees of freedom in collective shell model
states? (1984) .................................................................... 247
Generating kernel for boson realization of symplectic algebras
(O. Castaños, P. Kramer, M. Moshinsky, 1986) ....................... 261
Boson realization of sp(4, R) II. The generating kernel formulation
(con O. Castaños y P. Kramer, 1986) .................................. 267
Accidental degeneracy and symmetry Lie algebra
(con R. Dirl, 1985) ................................................................ 279
Collectivity and geometry IV. Sp(6) ⊃ Sp(2) × O(3) basis states
for open shells (con M. Nicolescu y R. T. Sharp, 1985) ............. 285
Canonical transformations to action and angle variables and their
representation in quantum mechanics IV. Periodic potentials
(J. Flores, G. López, G. Monsiváis, M. Moshinsky, 1986) .......... 289
Critical analysis of algebraic collective models (1986) ............. 325
The structure of phase space and quantum mechanics (1987) ........ 331
Representation of the generators of symplectic algebras
(E. Chacón, M. Moshinsky, 1987) ............................................. 337
Matrix representation of the generators of symplectic algebras:
I. The case of sp(4, R) (O. Castaños, M. Moshinsky, 1987) ........ 343
Matrix representation of the generators of symplectic algebras:
II. The general case with explicit results for sp(6, R)
(con E. Chacón, 1987) ....................................................... 359
Collectivity and Geometry V. Spectra and shapes in the two-
dimensional case (con E. Chacón, P. O. Hess, 1987) ................ 377
Group theory of the symplectic nuclear model (1988) ................ 395
Relativistic symplectic model for barions (1988) ....................... 405
Stability of deuterons in strong magnetic fields: an exactly
solved model (con G. Loyola, 1988) ........................................ 409
Stability of nuclei in strong magnetic fields (1988) .................. 417
Collectivity and geometry VI. Spectra and shapes in the three
dimensional case (E. Chacón, P. Hess, M. Moshinsky, 1989) ........ 419
Wigner distribution functions and the representation of non-
bijective canonical transformations in quantum mechanics
(R. Dirl, P. Kasperkovitz, M. Moshinsky, 1988) ....................... 431
Collectivity and geometry (1988) ............................................. 443
Las tres caras de la espectroscopía: atómica, nuclear y subnuclear
(con A. Sánchez, 1988) .......................................................... 449
Relativistic symplectic model for scalar-quark systems
(con A. Szczepaniak, 1989) .................................................... 479
Coherent states and accidental degeneracy for a charged
particle in a magnetic field (G. Loyola, M. Moshinsky,
A. Szczepaniak, 1989) ......................................................... 487
Accidental degeneracy and structure of matter in strong
magnetic fields (con G. Loyola y A. Szczepaniak, 1989) ........... 491
The Dirac oscillator (con A. Szczepaniak, 1989) ............................... 503
The two body Dirac oscillator (con G. Loyola y A. Szczepaniak,
1990) ................................................................................. 507
The Dirac oscillator and its contribution to the baryon mass
formula (con G. Loyola, A. Szczepaniak, C. Villegas
y N. Aquino, 1990) ............................................................... 533
Symmetry Lie algebra of the Dirac oscillator (C. Quesne,
M. Moshinsky, 1990) ............................................................. 567
Ingeniería Electromecánica
There are no comments on this title.


















