| Nota de contenido con formato |
CONTENIDO<br/><br/>Introducción al tomo 8, por Octavio Novaro Peñalosa ................ xiii<br/><br/>Does accidental degeneracy imply a symmetry group?<br/>(con C. Quesne, 1983) .............................................................. 1<br/><br/>Relativistic collective variables for many-body systems (P. O. Hess,<br/>M. Moshinsky, W. Greiner, G. Schmidt, 1982) ........................ 29<br/><br/>Accidental degeneracies and symmetry groups (1983) ................ 35<br/><br/>SU(3) and SU(5) dynamical symmetries in the extended interacting<br/>boson model (Sun Hong-Zhou, M. Moshinsky, A. Frank,<br/>P. van Isacker, 1983) ............................................................ 45<br/><br/>A hidden symmetry in collective excitations of many-body systems<br/>(con O. Castaños y A. Frank, 1983) .......................................... 73<br/><br/>Collectivity and geometry I. General approach (1984) ................ 81<br/><br/>Collectivity and geometry II. The two dimensional case<br/>(E. Chacón, P. Hess, M. Moshinsky, 1984) .............................. 91<br/><br/>Collectivity and geometry III. The three-dimensional case<br/>in the Sp(6) ⊃ Sp(2) × O(3) chain for closed shells<br/>(O. Castaños, E. Chacón, M. Moshinsky, 1984) ..................... 103<br/><br/>Geometry of nuclear collective motions (1984) ........................ 115<br/><br/>Analytic expressions for the matrix elements of generators<br/>of Sp(6) in an Sp(6) ⊃ U(3) basis (O. Castaños,<br/>E. Chacón, M. Moshinsky, 1984) ........................................... 123<br/><br/>Accidental degeneracies in the Zeeman effect and the symmetry groups<br/>(con N. Méndez, E. Murow y J. W. B. Hughes, 1984) .............. 131<br/><br/>Pseudoatoms and atoms in strong magnetic fields (con N. Méndez<br/>y E. Murow, 1985) .................................................................... 169<br/><br/>Symmetry constrained bosons and collectivity (1984) ................ 197<br/><br/>Constrained bosons for collective states in open shell nuclei<br/>(con E. Chacón y O. Castaños, 1984) ..................................... 213<br/><br/>Boson realization of sp(4) I. The matrix formulation (O. Castaños,<br/>E. Chacón, M. Moshinsky, C. Quesne, 1985) ........................... 223<br/><br/>Boson realization of symplectic algebras (1985) ..................... 241<br/><br/>Are there boson degrees of freedom in collective shell model<br/>states? (1984) .................................................................... 247<br/><br/>Generating kernel for boson realization of symplectic algebras<br/>(O. Castaños, P. Kramer, M. Moshinsky, 1986) ....................... 261<br/><br/>Boson realization of sp(4, R) II. The generating kernel formulation<br/>(con O. Castaños y P. Kramer, 1986) .................................. 267<br/><br/>Accidental degeneracy and symmetry Lie algebra<br/>(con R. Dirl, 1985) ................................................................ 279<br/><br/>Collectivity and geometry IV. Sp(6) ⊃ Sp(2) × O(3) basis states<br/>for open shells (con M. Nicolescu y R. T. Sharp, 1985) ............. 285<br/><br/>Canonical transformations to action and angle variables and their<br/>representation in quantum mechanics IV. Periodic potentials<br/>(J. Flores, G. López, G. Monsiváis, M. Moshinsky, 1986) .......... 289<br/><br/>Critical analysis of algebraic collective models (1986) ............. 325<br/><br/>The structure of phase space and quantum mechanics (1987) ........ 331<br/><br/>Representation of the generators of symplectic algebras<br/>(E. Chacón, M. Moshinsky, 1987) ............................................. 337<br/><br/>Matrix representation of the generators of symplectic algebras:<br/>I. The case of sp(4, R) (O. Castaños, M. Moshinsky, 1987) ........ 343<br/><br/>Matrix representation of the generators of symplectic algebras:<br/>II. The general case with explicit results for sp(6, R)<br/>(con E. Chacón, 1987) ....................................................... 359<br/><br/>Collectivity and Geometry V. Spectra and shapes in the two-<br/>dimensional case (con E. Chacón, P. O. Hess, 1987) ................ 377<br/><br/>Group theory of the symplectic nuclear model (1988) ................ 395<br/><br/>Relativistic symplectic model for barions (1988) ....................... 405<br/><br/>Stability of deuterons in strong magnetic fields: an exactly<br/>solved model (con G. Loyola, 1988) ........................................ 409<br/><br/>Stability of nuclei in strong magnetic fields (1988) .................. 417<br/><br/>Collectivity and geometry VI. Spectra and shapes in the three<br/>dimensional case (E. Chacón, P. Hess, M. Moshinsky, 1989) ........ 419<br/><br/>Wigner distribution functions and the representation of non-<br/>bijective canonical transformations in quantum mechanics<br/>(R. Dirl, P. Kasperkovitz, M. Moshinsky, 1988) ....................... 431<br/><br/>Collectivity and geometry (1988) ............................................. 443<br/><br/>Las tres caras de la espectroscopía: atómica, nuclear y subnuclear<br/>(con A. Sánchez, 1988) .......................................................... 449<br/><br/>Relativistic symplectic model for scalar-quark systems<br/>(con A. Szczepaniak, 1989) .................................................... 479<br/><br/>Coherent states and accidental degeneracy for a charged<br/>particle in a magnetic field (G. Loyola, M. Moshinsky,<br/>A. Szczepaniak, 1989) ......................................................... 487<br/><br/>Accidental degeneracy and structure of matter in strong<br/>magnetic fields (con G. Loyola y A. Szczepaniak, 1989) ........... 491<br/><br/>The Dirac oscillator (con A. Szczepaniak, 1989) ............................... 503<br/><br/>The two body Dirac oscillator (con G. Loyola y A. Szczepaniak,<br/>1990) ................................................................................. 507<br/><br/>The Dirac oscillator and its contribution to the baryon mass<br/>formula (con G. Loyola, A. Szczepaniak, C. Villegas<br/>y N. Aquino, 1990) ............................................................... 533<br/><br/>Symmetry Lie algebra of the Dirac oscillator (C. Quesne,<br/>M. Moshinsky, 1990) ............................................................. 567 |