Procesamiento y Análisis Digital de Imágenes /
Language: Español Publication details: ALFAOMEGA México 2012Edition: 1a EdiciónDescription: 428p Ilustración 17 X 23 CMISBN:- 9786077072232
- TK5102.9 .R54
| Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|---|
|
|
CI Gustavo A. Madero Sala General | Colección General | TK5102.9 .R54 2012 | EJ. 1 | No para préstamo externo | 0436T | ||
|
|
CI Gustavo A. Madero Sala General | Colección General | TK5102.9 .R54 2012 | EJ. 2 | Available | 0437T | ||
|
|
CI Gustavo A. Madero Sala General | Colección General | TK5102.9 .R54 2012 | EJ. 3 | Available | 0438T | ||
|
|
CI Gustavo A. Madero Sala General | Colección General | TK5102.9 .R54 2012 | EJ. 4 | Available | 0790T |
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259364462
Procesamiento y Análisis Digital de Imágenes
Book · May 2011
CITATIONS
10
READS
8,300
1 author:
Roberto Rodriguez Morales
Director of the Institute of Cybernetics, Mathematics & Physics (ICIMAF)
83 PUBLICATIONS 570 CITATIONS
SEE PROFILE
All content following this page was uploaded by Roberto Rodriguez Morales on 06 October 2014.
The user has requested enhancement of the downloaded file.
ÍNDICE
AUTORES ...........................................................................................................................13
PREFACIO..........................................................................................................................15
CAPÍTULO 1. INTRODUCCIÓN ....................................................................................19
1.1 ETAPAS PARA EL ANÁLISIS DE UNA IMAGEN.................................................24
1.2 ALCANCE Y PROYECCIÓN DEL LIBRO..............................................................30
1.3 ESTRUCTURA DEL LIBRO.....................................................................................32
CAPÍTULO 2. PROCESO DE CAPTACIÓN Y FORMACIÓN DE UNA
IMAGEN..............................................................................................................................45
2.1 FORMACIÓN DE LA IMAGEN ...............................................................................45
2.2 CAPTACIÓN DE UNA IMAGEN.............................................................................46
2.2.1 Muestreo y cuantificación ...................................................................................49
2.2.2 Representación de la imagen digital ...................................................................50
2.3 RESOLUCIÓN ESPACIAL Y RESOLUCIÓN EN NIVELES DE GRIS..................54
2.4 MODELO DE LA IMAGEN DIGITAL .....................................................................56
2.5 EL SISTEMA VISUAL HUMANO ...........................................................................59
2.5.1 El ojo humano .....................................................................................................60
2.5.2 Formación de la imagen por el sistema visual ....................................................61
2.6 ALGUNOS FENÓMENOS EN EL SISTEMA VISUAL HUMANO........................66
2.7 CONFIGURACIÓN DE UN SISTEMA DE VISIÓN POR COMPUTADORA........70
2.7.1 Costo/Beneficio...................................................................................................70
8 PROCESAMIENTO Y ANÁLISIS DIGITAL DE IMÁGENES © RA-MA
CAPÍTULO 3. MEJORAMIENTO Y RESTAURACIÓN DIGITAL DE UNA
IMAGEN..............................................................................................................................73
3.1 EL MEJORAMIENTO DIGITAL DE IMÁGENES...................................................73
3.1.1 Operaciones puntuales ........................................................................................76
3.1.1.1 El Histograma de una imagen. Su importancia para obtener información útil de
la imagen...................................................................................................................77
3.1.1.2 Ajuste de histogramas...............................................................................................80
3.1.1.3 Otros tipos de operaciones puntuales para el mejoramiento.....................................88
3.2 OPERACIONES LOCALES......................................................................................95
3.2.1 Acentuado de detalles en una imagen ...............................................................101
3.3 REDUCCIÓN DEL RUIDO EN UNA IMAGEN POR FILTRADO PASO
BAJO.........................................................................................................................105
3.4 OPERACIONES ESTADÍSTICAS PARA EL MEJORAMIENTO DE UNA
IMAGEN..................................................................................................................108
3.4.1 Mejoramiento del contraste...............................................................................108
3.4.2 Filtrado estadístico para ruido aditivo...............................................................111
3.4.3 Filtros no-lineales para la atenuación del ruido de impulso..............................115
3.5 RESTAURACIÓN DIGITAL DE IMÁGENES.......................................................122
3.5.1 Sistema lineal ....................................................................................................123
3.5.1.1 Sistema lineal invariante: Función de transferencia .............................................. 126
3.5.2 Proceso de registro ............................................................................................127
3.5.3 Método para la obtención de la función de dispersión puntual.........................128
3.5.3.1 Aspectos teóricos del método del “Cepstrum”...................................................... 129
3.5.3.2 Dos tipos de funciones de dispersión puntual........................................................ 132
3.5.4 Método lineal y no-lineal para la restauración digital de imágenes..................140
3.5.4.1 Método lineal de restauración................................................................................. 142
3.5.4.2 Método no lineal de restauración............................................................................ 148
CAPÍTULO 4. SEGMENTACIÓN DE IMÁGENES....................................................155
4.1 MÉTODOS BASADOS EN EL UMBRALADO DEL HISTOGRAMA.................157
4.1.1 El método de Otsu .............................................................................................160
4.2 MÉTODOS BASADOS EN LA FORMACIÓN DE REGIONES............................163
4.2.1 Crecimiento de regiones por agrupamiento de píxeles .....................................166
4.2.2 Segmentación por el clasificador de Bayes.......................................................168
4.2.2.1 Fórmula de Bayes aplicada a la segmentación supervisada................................... 170
4.3 MÉTODOS DE SEGMENTACIÓN BASADOS EN LA DETECCIÓN DE
DISCONTINUIDADES............................................................................................173
4.3.1 Detección de puntos, bordes y líneas ................................................................173
4.3.2 Detección de bordes mediante el cálculo del gradiente ....................................177
© RA-MA ÍNDICE 9
4.3.3 Detección de bordes a través de las máscaras de sobel.....................................179
4.3.4 Detección de bordes a través del laplaciano .....................................................180
4.4 DETECCIÓN DE LÍNEAS.......................................................................................185
4.5 DETECTORES DE BORDES BASADOS EN MÁSCARAS..................................186
4.5.1 Operador de Kirsh .............................................................................................187
4.5.2 Operador de Robinson.......................................................................................188
4.5.3 Operador de Prewit............................................................................................189
4.6 OTRAS FORMAS DE DETECCIÓN DE BORDES................................................191
4.6.1 Operador de homogeneidad ..............................................................................192
4.6.2 Operador diferenciador .....................................................................................192
4.7 OPERADOR DE CANNY........................................................................................195
4.7.1 Localización de bordes......................................................................................196
4.7.1.1 Supresión de no máximos...................................................................................... 196
4.7.1.2 Umbralado............................................................................................................. 197
4.8 TÉCNICAS ACTUALES DE SEGMENTACIÓN...................................................201
4.8.1 Modelos deformables ........................................................................................201
4.8.2 Media desplazada (“mean shift”) ......................................................................207
4.8.2.1 Estimación por núcleos.......................................................................................... 208
4.8.2.2 El procedimiento de la media desplazada.............................................................. 209
CAPÍTULO 5. MORFOLOGÍA MATEMÁTICA........................................................223
5.1 TRANSFORMACIONES MORFOLÓGICAS ........................................................223
5.1.1 Algunas propiedades de las transformaciones morfológicas ............................224
5.2 OPERACIONES BÁSICAS DE EROSIÓN Y DILATACIÓN................................225
5.2.1 Dilatación y erosión generalizadas....................................................................229
5.3 APERTURA Y CIERRE...........................................................................................233
5.4 GRADIENTE MORFOLÓGICO .............................................................................236
5.5 TRANSFORMACIÓN DE SOMBRERO DE COPA (“TOP-HAT”).......................237
5.6 TRANSFORMACIÓN DE ACIERTO O ERROR (“HIT OR MISS”) ......................238
5.7 RECONSTRUCCIÓN DE IMÁGENES A TRAVÉS DE OPERACIONES
MORFOLÓGICAS...................................................................................................240
5.7.1 Definiciones fundamentales ..............................................................................240
5.7.2 Reconstrucción en el caso binario.....................................................................241
5.7.3 Reconstrucción morfológica en el caso de niveles de grises ............................245
5.7.3.1 Máximos regionales y extracción de techos .......................................................... 248
5.7.3.2 Algoritmos rápidos para la reconstrucción de imágenes en niveles de grises ....... 251
5.8 SEGMENTACIÓN DE IMÁGENES A TRAVÉS DE TRANSFORMACIONES
MORFOLÓGICAS...................................................................................................258
10 PROCESAMIENTO Y ANÁLISIS DIGITAL DE IMÁGENES © RA-MA
5.8.1 Segmentación de imágenes por el método de “watershed” ..............................259
CAPÍTULO 6. ANÁLISIS DE IMÁGENES: REPRESENTACIÓN Y
DESCRIPCIÓN.................................................................................................................269
6.1 REPRESENTACIÓN DE LOS OBJETOS EN UNA IMAGEN ..............................270
6.1.1 Esquemas de representación .............................................................................270
6.2 EXTRACCIÓN DE RASGOS DESCRIPTORES....................................................289
6.2.1 Descriptores del contorno de una forma ...........................................................290
6.2.2 Factor de forma circular normalizado ...............................................................291
6.2.3 Ancho y altura de un objeto ..............................................................................292
6.2.4 Radio medio ......................................................................................................293
6.2.5 Descriptores basados en los momentos geométricos ........................................293
6.2.5.1 Invariantes a cambios de escala: Momentos centrales normalizados .................... 298
6.2.5.2 Invariantes a traslaciones, rotaciones y cambios de escala.................................... 299
6.2.5.3 Invariantes a desplazamiento, rotaciones, cambios de escala y cambios de
contraste................................................................................................................. 300
6.2.5.4 El teorema fundamental (revisado) para momentos invariantes............................. 301
6.2.6 Descriptores de Fourier .....................................................................................307
6.3 DESCRIPTORES BASADOS EN REGIONES.......................................................314
6.3.1 Descriptores simples .........................................................................................314
6.3.2 Otros descriptores de región..............................................................................316
6.3.2.1 El factor de compacidad o de irregularidad........................................................... 316
6.3.2.2 Factor de regularidad............................................................................................. 318
6.3.3 Descriptores topológicos ...................................................................................318
CAPÍTULO 7. ANÁLISIS DE IMÁGENES: RECONOCIMIENTO DE
PATRONES.......................................................................................................................325
7.1 CLASIFICADORES ESTADÍSTICOS....................................................................326
7.1.1 Clasificadores de distancia mínima...................................................................327
7.1.2 Clasificadores del tipo k-vecinos ......................................................................331
7.1.3 Clasificadores de mahalanobis ..........................................................................332
7.1.4 Clasificadores bayesianos .................................................................................335
7.2 CLASIFICADORES NEURONALES .....................................................................342
7.2.1 Un modelo neuronal ..........................................................................................344
7.2.2 Neurona con entrada múltiple ...........................................................................344
7.2.3 Ejemplos de funciones de transferencia............................................................345
7.2.4 Arquitecturas fundamentales.............................................................................346
7.2.5 El perceptrón .....................................................................................................349
7.2.6 El perceptrón multicapa ....................................................................................355
© RA-MA ÍNDICE 11
7.2.7 Las redes Adaline y Madaline...........................................................................362
7.2.8 Redes neuronales morfológicas con procesamiento dendral ............................364
7.2.9 Memorias asociativas ........................................................................................381
7.2.10 Red de Kohonen..............................................................................................395
ANEXO A. ALGUNAS RELACIONES ESTADÍSTICAS...........................................411
ANEXO B. OBTENCIÓN DE LA EXPRESIÓN DE LA VARIANZA PARA EL
CASO DE RUIDO ADITIVO..........................................................................................413
ANEXO C. OBTENCIÓN DE LA EXPRESIÓN DEL ESPECTRO DE
POTENCIA........................................................................................................................417
ANEXO D. PROPIEDADES DE LA CORRELACIÓN UNIDIMENSIONAL DE
LA IMAGEN .....................................................................................................................423
ÍNDICE ALFABÉTICO...................................................................................................427
Los sistemas de visión artificial o de visión por computadora, terminología en la actualidad de uso muy habitual, tratan de englobar un conjunto de procedimientos relacionados con el procesamiento y análisis digital de imágenes, los cuales abarcan un sinfín de técnicas y herramientas matemáticas, físicas, computacionales y de ingeniería con aplicaciones en numerosos campos de la vida moderna.El avance de los sistemas de visión por computadora ha estado estrechamente relacionado a la tecnología informática. Este manual está orientado hacia la investigación, teoría, desarrollo de algoritmos y comprobación de programas, aunque no esperamos que sea solo consultado por personas dedicadas al mundo de la informática o de las ciencias básicas, sino que también puede ser examinado por otros especialistas, como ingenieros, biólogos, radiólogos, patólogos, geólogos, meteorólogos, oncólogos, entre otros.A diferencia con otros manuales dedicados a esta especialidad, en éste se ha tratado de que cada capítulo fuera autoconsistente, en el sentido que no fuera necesario recorrer todo el texto para poder entender lo expresado. Por este motivo, cada sección tiene las herramientas adecuadas para la comprensión de un modelo o de un tipo de procedimiento, seguido de un ejemplo visual y, a continuación, una función (en lenguaje C) o los pasos algorítmicos para que el lector tenga la oportunidad de probar lo aprendido con sus ejemplos numéricos.'
Ingeniería en Tecnologías de la Información y Comunicación
There are no comments on this title.


















