000 08162cam a22002294a 4500
008 250731b mx ||||| |||| 00| 0 spa d
020 _a9786077630173
040 _aITTLALPAN
_bEspañol
_cITTLALPAN
041 _aspa
041 _aeng
050 0 0 _aQC776
_bM67575
100 _aMarcos Moshinsky
_92426
_eAutor.
245 0 0 _aFísica teórica
_b1990-1996 /
_cMarcos Moshinsky
260 3 _aMéxico :
_bEL COLEGIO NACIONAL.
_c2008
300 _a626 páginas :
_bTablas, gráficas y fórmulas :
_c24 cm.
504 _aIncluye referencias bibliográficas.
505 _aCONTENIDO Introducción al tomo 9, por Octavio Novaro Peñalosa ............... xiii Art or science: the determination of the symmetry Lie algebra for a hamiltonian with accidental degeneracy (con C. Quesne y G. Loyola, 1990) ............................................ 1 Relativistic mass formula for baryons (con G. Loyola y C. Villegas, 1990) ................................................ 31 Anomalous basis for representations of the Poincaré group (con G. Loyola y C. Villegas, 1991) ................................. 41 Comparison between perturbative and exact transitions induced by an interaction (con G. Loyola y C. Villegas, 1991) ............. 51 Exact time dependent transitions to negative energy states, due to interaction in the Dirac equation (con G. Loyola y C. Villegas, 1990) ............................................ 65 Dynamical model for heavy ion collisions with a single resonance (con G. Loyola y C. Villegas, 1991) ................................. 89 Relativistic invariance of a many body system with a Dirac oscillator interaction (con G. Loyola y C. Villegas, 1991) .......... 93 The decay process: an exactly soluble example and its implications (G. García-Calderón, G. Loyola, M. Moshinsky, 1992) ............ 101 Universal symmetry Lie algebras for classical two dimensional hamiltonians and their translation to quantum mechanics (con C. Quesne, 1991) ........................................... 121 A Dirac equation with an oscillator potential and spin-orbit coupling (V. I. Kukulin, G. Loyola, M. Moshinsky, 1991) .......... 127 Relativistic interactions by means of boundary conditions: the Breit-Wigner formula (con G. López-Laurrabaquio, 1991) .................................................... 131 Transformation from O. Castaños, M. Moshinsky, C. Quesne, 1992) ............................. 141 Transformation to pseudo- In heavy deformed nuclei (O. Castaños, M. Moshinsky, C. Quesne, 1992) ................... 161 Barut equation and the particle-antiparticle system with a Dirac oscillator interaction (con G. Loyola, 1993) .............. 167 Mass spectra of the particle-antiparticle system with a Dirac oscillator interaction (con G. Loyola, 1993) .................... 181 Comparison of perturbative and variational procedures in a relativistic problem (con L. Benet, G. Loyola y A. Salinas, 1992) ....................................................... 203 Quantum groups and the recovery of Symmetry in the hamiltonian of the nuclear shell model (A. del Sol Mesa, G. Loyola, M. Moshinsky, V. Velázquez, 1993) ................... 217 Penetrability of a one-dimensional Coulomb potential (1993) ...... 231 Time dependent model for heavy ion collisions with a single resonance (con G. Loyola y J. L. Mateos, 1991) .................... 237 The one body Dirac oscillator (1993) ............................ 249 Relativistic Breit-Wigner formula and its applications (1992) ...... 261 Relativistic generalization of the hamiltonian of the nuclear shell model (V. I. Kukulin, G. Loyola, M. Moshinsky, 1992) .......... 275 Relativistic generalization of the Breit-Wigner formula (1993) ...... 281 Relations between the nuclear shell model hamiltonian and the orthosymplectic super algebra Osp(1/2) (con A. B. Balantekin y O. Castaños, 1992) ........................................... 297 basis of the matrix representation of a deformed Nilsson hamiltonian (con A. del Sol Mesa, 1992) ....................................... 303 CONTENIDO Quantum groups and the hamiltonian of the nuclear shell model (con A. del Sol Mesa, 1992) .................................... 309 Complejidad relativista en la física (1992) ........................... 315 Qualitative picture of mesons in the Dirac oscillator theory (con A. González y G. Loyola, 1992) .............................. 323 Relation between decay and delay times (G. García-Calderón, J. L. Mateos, M. Moshinsky, 1993) ............................... 335 Aspects of the relativistic two body problem (con A. del Sol Mesa y Yu F. Smirnov, 1993) ........................... 347 Radial equation for the particle-antiparticle system with a Dirac oscillator interaction and a qualitative application to mesons (con A. González y G. Loyola, 1994) ............................. 361 Relations between different approaches to the relativistic two body problem (A. del Sol Mesa, M. Moshinsky, 1994) ................... 381 A relativistic cockroach nest (con A. del Sol Mesa, 1994) ........... 391 Description of survival and nonescape probabilities (con G. García-Calderón y J. L. Mateos, 1994) .................... 405 Response to "Comment on: 'Penetrability of a one-dimensional Coulomb potential'" by Roger G. Newton, (M. Moshinsky, 1994) ............................................ 411 Symmetry superalgebra of a relativistic two-body system with a Dirac oscillator interaction (con C. Quesne y Yu F. Smirnov, 1995) ............................................... 415 The relativistic many body problem with an oscillator interaction (1995) ................................................. 419 Energy resources: present and future in México (1994) ............ 429 Modern applications of the harmonic oscillator (con Yu F. Smirnov, 1995) ............................................ 437 Supersymmetry aspects of the modified two body Dirac oscillator (con Yu F. Smirnov y C. Quesne, 1994) ........................... 449 The harmonic oscillator in modern nuclear theory (1994) .......... 451 Resonant spectra and the time evolution of the survival and non-escape probabilities (con G. García-Calderón y J. L. Mateos, 1995) ................................................... 453 Supersymmetry and superalgebra for the two body system with a Dirac oscillator interaction (con C. Quesne y Yu F. Smirnov, 1995) ............................................... 457 Polar optical oscillators in quantum wires and free standing wires in the electron phonon interaction hamiltonians (F. Comas, A. Cantarero, C. Trallero-Giner, M. Moshinsky, 1995) ............. 469 Symmetry Lie algebra of the two body system with Dirac oscillator interaction (con A. del Sol Mesa y Yu F. Smirnov, 1995) ............ 487 Variational procedures for resonant states (con A. García-Zenteno y Yu F. Smirnov, 1995) ......................................... 507 Basis of irreps of the chain of Lie algebras sp(6)⊃sp(4)⊕su(2)⊃su(2)⊕su(2)⊕su(2) (E. Chacón, M. Moshinsky, 1995) ......... 513 Barut's procedure for the relativistic many body problem versus other approaches (1996) ..................................... 523 The Latin American School of Physics 1959-1995 (1996) ........... 533 Group theory and the relativistic many body problem (1996) ...... 535 Validity of variational procedures for resonant states (A. García Zenteno, M. Moshinsky, Yu F. Smirnov, 1996) ................ 567 Diffraction in time in Kronig-Penney lattice (G. Monsivais, M. Moshinsky, G. Loyola, 1996) ........................................ 573 The Dirac oscillator of arbitrary spin (con A. del Sol Mesa, 1996) ... 583 Survival and nonescape probabilities for resonant and non-resonant decay (G. García-Calderón, J. L. Mateos, M. Moshinsky, 1996) ................................................... 603
526 _aIngeniería Electromecánica
650 0 _aCiencia
_9748
942 _2lcc
_cLIB
_n0
945 _a1251
_bEdgar Adrián Morales Avilés
_c1251
_dEdgar Adrián Morales Avilés
999 _c8088
_d8088