| 000 | 06630cam a2200253 i 4500 | ||
|---|---|---|---|
| 003 | OSt | ||
| 008 | 250318s2002 Mx a||||||||||||||||Esp d | ||
| 020 | _a9781292060507 | ||
| 040 |
_aITTLAHUAC _bspa _cITTLAHUAC _dITTLAHUAC _erda |
||
| 041 | _aspa | ||
| 050 | 0 | 0 |
_a TJ213 _b.K43 _c2002 |
| 100 |
_aK. Khalil Hassan _92301 _eAutor |
||
| 245 | 0 | 0 |
_aNonlinear Control / _bHassan K. Khalil _cPearson |
| 250 | _a1a. Edicion | ||
| 260 |
_aMéxico _bPearson _c2015 |
||
| 300 |
_a399 páginas _bilustraciones _c23.5 cm. |
||
| 505 | _aFundamentos de Sistemas No Lineales: Modelos, equilibrio, linealización. Análisis de Estabilidad de Lyapunov: Teoremas, funciones de Lyapunov, estabilidad asintótica. Control por Retroalimentación de Estado: Linearización por retroalimentación, control de modos deslizantes. Diseño de Controladores No Lineales: Control robusto, control adaptativo. Sistemas de Tiempo Discreto No Lineales. Sistemas Singulares y Teoremas de Perturbación Singular. Control de Sistemas de Parámetros Variantes en el Tiempo (LTI y LPV). Diseño Basado en Paso-Atrás (Backstepping). Teoría del Observador No Lineal. Sistemas de Conmutación y Salto (Switched Systems and Jump Systems). Examples of Nonlinear Systems: Real-world examples from various fields such as robotics, biology, and economics. Mathematical Foundations: Basic concepts such as system representation, state-space models, and system dynamics. Chapter 2: Mathematical Preliminaries Differential Equations: Review of ordinary differential equations (ODEs) that describe nonlinear systems. Lyapunov Stability Theory: Introduction to Lyapunov's second method for stability analysis. Nonlinear System Representations: Techniques for representing nonlinear systems and their properties. Chapter 3: Stability of Nonlinear Systems Lyapunov Stability: In-depth analysis of Lyapunov stability, including local and global stability, asymptotic stability, and exponential stability. LaSalle's Invariance Principle: A powerful method for analyzing the stability of nonlinear systems. Practical Stability Analysis: Applying Lyapunov's methods to real-world nonlinear systems. Chapter 4: Feedback Linearization Concept of Feedback Linearization: The process of transforming nonlinear systems into linear ones using state feedback. Controllability and Observability: Conditions for feedback linearization, including discussions of system controllability and observability. Practical Applications: Examples where feedback linearization simplifies control design for nonlinear systems. Chapter 5: Control Lyapunov Functions Control Lyapunov Functions (CLFs): Using Lyapunov functions to design stabilizing controllers for nonlinear systems. Design of Stabilizing Controllers: Practical steps for creating controllers that ensure system stability using CLFs. Example Applications: Application of CLFs in robotic systems and autonomous vehicles. Chapter 6: Nonlinear Control Design Techniques Sliding Mode Control: Explanation of sliding mode control, a technique for robustly controlling nonlinear systems. Backstepping Method: A method for systematically designing control laws for nonlinear systems. Small-Gain Theorem: A tool for analyzing stability and robustness in the presence of nonlinearities. Chapter 7: Global Asymptotic Stability Global Stabilization: Techniques to achieve global stability for nonlinear systems. Constructing Global Lyapunov Functions: Methods for developing Lyapunov functions that guarantee global asymptotic stability. Applications: Global stabilization in practical systems like robotics and aerospace. Chapter 8: Control in the Presence of Disturbances Robust Control Design: Design strategies for nonlinear systems that remain stable and performant under disturbances. Input-Output Stability: Analysis of stability from an input-output perspective, especially for systems subject to external disturbances. Disturbance Rejection: Strategies for rejecting disturbances in practical nonlinear systems. Chapter 9: Control of Underactuated Systems Underactuated Systems: Introduction to systems with fewer actuators than degrees of freedom (common in robotics, aerospace, etc.). Control Strategies for Underactuated Systems: Techniques for stabilizing and controlling such systems despite limited actuation. Examples: Application to systems like helicopters, drones, and bipedal robots. Chapter 10: Applications of Nonlinear Control Robotic Systems: Application of nonlinear control strategies in robotics, including trajectory tracking and stabilization. Aerospace Systems: Nonlinear control in the context of aircraft, spacecraft, and satellite systems. Automobile Systems: Application of nonlinear control in advanced driver assistance systems (ADAS) and autonomous vehicles. Biological Systems: Use of nonlinear control in biological models and processes, such as in cell biology or metabolic networks. Chapter 11: Advanced Topics Nonlinear Systems with Time-Delays: Analysis and control of nonlinear systems that involve time delays. H-infinity Control for Nonlinear Systems: Advanced methods for robust control using the H-infinity approach in nonlinear systems. Passivity-Based Control: Control design based on the passivity property of systems to achieve stability and robustness. Appendices Mathematical Tools: A review of key mathematical tools used throughout the book, including matrix theory, differential equations, and control theory. Bibliography: References to seminal and recent research papers and textbooks in the field of nonlinear control. | ||
| 520 | _a"Nonlinear Control" de Hassan K. Khalil es una obra fundamental que ofrece una introducción rigurosa y completa a la teoría de control no lineal. El autor aborda desde los conceptos básicos de los sistemas no lineales hasta técnicas avanzadas de análisis de estabilidad y diseño de controladores, como la linealización por retroalimentación, el control de modos deslizantes y el diseño basado en Lyapunov. El libro se distingue por su enfoque claro y sistemático, proporcionando las herramientas matemáticas y conceptuales necesarias para entender y resolver problemas complejos en sistemas de control no lineales. Es un recurso indispensable para quienes buscan profundizar en esta área de la ingeniería de control. | ||
| 526 | _aIngeniería Mecatrónica | ||
| 526 | _aIngeniería Electrónica | ||
| 650 | 0 |
_aNonlinear Control _944 |
|
| 942 |
_cLIB _2lcc |
||
| 945 |
_a1 _badmin _c1266 _dAlberto Toriz Domínguez |
||
| 999 |
_c4700 _d4700 |
||