| 000 | 02962cam a22003374a 4500 | ||
|---|---|---|---|
| 003 | OSt | ||
| 008 | 250307s2004 mx |||||||||||||||||spa d | ||
| 020 | _a9786071508973 / 978970106195 | ||
| 040 |
_aTECNM/ITTláhuac-II _bspa _cITTláhuac-II _dITTláhuac-II _erda |
||
| 041 | _aspa | ||
| 050 | 0 | 0 |
_aQA304 _bF84 _c2004 |
| 100 |
_aSamuel Fuenlabrada de la Vega Trucíos _92814 _eAutor |
||
| 245 |
_aCálculo Integral / _cSamuel Fuenlabrada de la Vega Trucíos |
||
| 250 | _a1ra Edición | ||
| 260 |
_bMc Graw Hill, _aMéxico: _c2004 |
||
| 300 |
_a232 páginas. _bEcuaciones, gráficas, _c27 cm |
||
| 505 | _a1. Diferenciales 2. Antiderivadas. Integración indefinida 3. integración de una función compuesta 4. Constante de integración 5. Integrales Inmediatas. Funciones trigonométricas directas 6. Integrales Inmediatas (continuación). Funciones trigonométricas inversas 7. Integrales inmediatas (continuación). Funciones exponenciales y logarítmicas 8. Métodos de integración. Integraciónde funciones trigonométricas 9. Métodos de integración. integración por partes 10. Métodos de integración. Integración por sustitución trigonométricas 11. Métodos de integración. Integración por fracciones parciales 12. Métodos de integración. Integración por racionalización 13. Integral definida 14. La integral definida en el cálculo de áreas 15. La integral definida en el cálculo de volúmenes 16. La integral definida. Longitud de un arco (curva) | ||
| 520 | _aEl libro Cálculo Integral de Samuel Fuenlabrada, en su primera edición, está diseñado como un texto de apoyo para estudiantes de nivel universitario en carreras de ingeniería, matemáticas y ciencias aplicadas. Su enfoque es eminentemente didáctico, con explicaciones claras, ejemplos resueltos paso a paso y ejercicios seleccionados para reforzar el aprendizaje del cálculo integral. Cubre los temas esenciales desde el concepto de antiderivada hasta técnicas avanzadas de integración, aplicaciones físicas y geométricas de la integral definida, así como el teorema fundamental del cálculo. Además, integra herramientas gráficas y analíticas que permiten al lector interpretar la integral como acumulación y como área bajo la curva. Es un texto ideal para cursos introductorios y como base para estudios más avanzados de matemáticas aplicadas. | ||
| 526 | _aIngenieria en Gestion Empresarial | ||
| 526 | _aIngeniería en Logística | ||
| 526 | _aIngeniería Mecánica | ||
| 526 | _aIngeniería en Tecnologías de la Información y Comunicaciones | ||
| 650 | _aCálculo | ||
| 650 | 0 |
_aIngeniería en gestión empresarial _9584 |
|
| 650 | 0 |
_aIngeniería logística _9583 |
|
| 650 | 0 |
_aIngeniería mecánica _9582 |
|
| 650 | 0 |
_aIngeniería en tecnologias de la información y comunicaciones _9585 |
|
| 700 | 2 |
_aJavier Léon Sarabia _92823 |
|
| 942 |
_cLIB _2ddc |
||
| 945 |
_a1 _badmin _c1253 _dLuis Felipe Rivas Mendoza |
||
| 999 |
_c1303 _d1303 |
||