Manuel René Jiménez

Cálculo diferencial / Manuel René Jiménez - 1er Ed. - México: PEARSON 2011 - 200 páginas Figuras, tablas 25 cm

BLOQUE 1
ARGUMENTAS EL ESTUDIO DEL CÁLCULO MEDIANTE EL ANÁLISIS DE SU EVOLUCIÓN, SUS MODELOS MATEMÁTICOS Y SU RELACIÓN CON HECHOS REALES

Evolución del Cálculo – 2

¿Qué estudia el Cálculo? – 5

Modelos matemáticos: un acercamiento a máximos y mínimos – 7

Cálculo de áreas y volúmenes – 8

Definición de tangente – 15

Velocidad – 16

Límite de una serie – 17

BLOQUE 2
RESUELVES PROBLEMAS DE LÍMITES EN SITUACIONES DE CARÁCTER ECONÓMICO, ADMINISTRATIVO, NATURAL Y SOCIAL

Los límites: su interpretación en una tabla, en una gráfica y su aplicación en expresiones algebraicas – 29

Tangente a una curva – 29

Límite de una función – 34

El cálculo de límites en funciones algebraicas y trascendentes – 35

Límites de funciones polinomiales – 36

Límites de funciones racionales – 39

Límites laterales – 46

Límites de funciones que se tienen que racionalizar – 50

Límites de funciones trascendentes – 52

Cálculo de límites utilizando las leyes de los límites – 52

Continuidad – 55

Límites que comprenden el infinito – 58

BLOQUE 3
CALCULAS, INTERPRETAS Y ANALIZAS RAZONES DE CAMBIO EN FENÓMENOS NATURALES, SOCIALES, ECONÓMICOS Y ADMINISTRATIVOS

La variación de un fenómeno a través del tiempo – 82

Incremento de una función – 85

Razones de cambio – 85

La velocidad, la rapidez y la aceleración de un móvil en un periodo de tiempo – 86

Velocidad como razón de cambio – 90

La derivada y otras razones de cambio – 96

Reglas para derivar – 99

Derivadas de funciones exponenciales – 106

Regla de la cadena – 110

BLOQUE 4
CALCULAS E INTERPRETAS MÁXIMOS Y MÍNIMOS APLICADOS A PROBLEMAS DE OPTIMIZACIÓN

Producciones, máximos y mínimos – 123

Aplicaciones a la economía – 133

Variaciones en las producciones, máximos y mínimos relativos – 138

Funciones crecientes y decrecientes – 140

Cálculo de máximos y mínimos relativos con el criterio de la primera derivada – 141

Concavidad y punto de inflexión – 145

Cálculo de máximos y mínimos con el criterio de la segunda derivada – 146

Este texto introduce los conceptos fundamentales del cálculo diferencial: límites, continuidad, derivadas y aplicaciones prácticas mediante aproximaciones y modelado. Su enfoque por competencias vincula teoría, interpretación gráfica y problemas de la vida real, privilegiando herramientas analíticas útiles para estudiantes de ciencias aplicadas y economía. A través de explicaciones claras con ejemplos progresivos, prepara a los estudiantes para abordar problemas de optimización, tasas de cambio y errores en mediciones.



978‑6073237697


Ingeniería mecánica
Ingeniería en tecnologias de la información y comunicaciones
Ingeniería logística
Ingeniería en gestión empresarial

QA303 / J56