TY - BOOK AU - Marcos Moshinsky TI - Física teórica: 1982-1990 SN - 9786077630166 AV - QC776 M67574 PY - 2008/// CY - México PB - EL COLEGIO NACIONAL. KW - Ciencia N1 - Incluye referencias bibliográficas; CONTENIDO Introducción al tomo 8, por Octavio Novaro Peñalosa ................ xiii Does accidental degeneracy imply a symmetry group? (con C. Quesne, 1983) .............................................................. 1 Relativistic collective variables for many-body systems (P. O. Hess, M. Moshinsky, W. Greiner, G. Schmidt, 1982) ........................ 29 Accidental degeneracies and symmetry groups (1983) ................ 35 SU(3) and SU(5) dynamical symmetries in the extended interacting boson model (Sun Hong-Zhou, M. Moshinsky, A. Frank, P. van Isacker, 1983) ............................................................ 45 A hidden symmetry in collective excitations of many-body systems (con O. Castaños y A. Frank, 1983) .......................................... 73 Collectivity and geometry I. General approach (1984) ................ 81 Collectivity and geometry II. The two dimensional case (E. Chacón, P. Hess, M. Moshinsky, 1984) .............................. 91 Collectivity and geometry III. The three-dimensional case in the Sp(6) ⊃ Sp(2) × O(3) chain for closed shells (O. Castaños, E. Chacón, M. Moshinsky, 1984) ..................... 103 Geometry of nuclear collective motions (1984) ........................ 115 Analytic expressions for the matrix elements of generators of Sp(6) in an Sp(6) ⊃ U(3) basis (O. Castaños, E. Chacón, M. Moshinsky, 1984) ........................................... 123 Accidental degeneracies in the Zeeman effect and the symmetry groups (con N. Méndez, E. Murow y J. W. B. Hughes, 1984) .............. 131 Pseudoatoms and atoms in strong magnetic fields (con N. Méndez y E. Murow, 1985) .................................................................... 169 Symmetry constrained bosons and collectivity (1984) ................ 197 Constrained bosons for collective states in open shell nuclei (con E. Chacón y O. Castaños, 1984) ..................................... 213 Boson realization of sp(4) I. The matrix formulation (O. Castaños, E. Chacón, M. Moshinsky, C. Quesne, 1985) ........................... 223 Boson realization of symplectic algebras (1985) ..................... 241 Are there boson degrees of freedom in collective shell model states? (1984) .................................................................... 247 Generating kernel for boson realization of symplectic algebras (O. Castaños, P. Kramer, M. Moshinsky, 1986) ....................... 261 Boson realization of sp(4, R) II. The generating kernel formulation (con O. Castaños y P. Kramer, 1986) .................................. 267 Accidental degeneracy and symmetry Lie algebra (con R. Dirl, 1985) ................................................................ 279 Collectivity and geometry IV. Sp(6) ⊃ Sp(2) × O(3) basis states for open shells (con M. Nicolescu y R. T. Sharp, 1985) ............. 285 Canonical transformations to action and angle variables and their representation in quantum mechanics IV. Periodic potentials (J. Flores, G. López, G. Monsiváis, M. Moshinsky, 1986) .......... 289 Critical analysis of algebraic collective models (1986) ............. 325 The structure of phase space and quantum mechanics (1987) ........ 331 Representation of the generators of symplectic algebras (E. Chacón, M. Moshinsky, 1987) ............................................. 337 Matrix representation of the generators of symplectic algebras: I. The case of sp(4, R) (O. Castaños, M. Moshinsky, 1987) ........ 343 Matrix representation of the generators of symplectic algebras: II. The general case with explicit results for sp(6, R) (con E. Chacón, 1987) ....................................................... 359 Collectivity and Geometry V. Spectra and shapes in the two- dimensional case (con E. Chacón, P. O. Hess, 1987) ................ 377 Group theory of the symplectic nuclear model (1988) ................ 395 Relativistic symplectic model for barions (1988) ....................... 405 Stability of deuterons in strong magnetic fields: an exactly solved model (con G. Loyola, 1988) ........................................ 409 Stability of nuclei in strong magnetic fields (1988) .................. 417 Collectivity and geometry VI. Spectra and shapes in the three dimensional case (E. Chacón, P. Hess, M. Moshinsky, 1989) ........ 419 Wigner distribution functions and the representation of non- bijective canonical transformations in quantum mechanics (R. Dirl, P. Kasperkovitz, M. Moshinsky, 1988) ....................... 431 Collectivity and geometry (1988) ............................................. 443 Las tres caras de la espectroscopía: atómica, nuclear y subnuclear (con A. Sánchez, 1988) .......................................................... 449 Relativistic symplectic model for scalar-quark systems (con A. Szczepaniak, 1989) .................................................... 479 Coherent states and accidental degeneracy for a charged particle in a magnetic field (G. Loyola, M. Moshinsky, A. Szczepaniak, 1989) ......................................................... 487 Accidental degeneracy and structure of matter in strong magnetic fields (con G. Loyola y A. Szczepaniak, 1989) ........... 491 The Dirac oscillator (con A. Szczepaniak, 1989) ............................... 503 The two body Dirac oscillator (con G. Loyola y A. Szczepaniak, 1990) ................................................................................. 507 The Dirac oscillator and its contribution to the baryon mass formula (con G. Loyola, A. Szczepaniak, C. Villegas y N. Aquino, 1990) ............................................................... 533 Symmetry Lie algebra of the Dirac oscillator (C. Quesne, M. Moshinsky, 1990) ............................................................. 567; Ingeniería Electromecánica ER -