Marcos Moshinsky

Física teórica 1982-1990 Marcos Mosinsky - 1a edición - México : EL COLEGIO NACIONAL. 2008 - 576 páginas : Gráficas, fórmulas y tablas : 24 cm.

Incluye referencias bibliográficas.

CONTENIDO

Introducción al tomo 8, por Octavio Novaro Peñalosa ................ xiii

Does accidental degeneracy imply a symmetry group?
(con C. Quesne, 1983) .............................................................. 1

Relativistic collective variables for many-body systems (P. O. Hess,
M. Moshinsky, W. Greiner, G. Schmidt, 1982) ........................ 29

Accidental degeneracies and symmetry groups (1983) ................ 35

SU(3) and SU(5) dynamical symmetries in the extended interacting
boson model (Sun Hong-Zhou, M. Moshinsky, A. Frank,
P. van Isacker, 1983) ............................................................ 45

A hidden symmetry in collective excitations of many-body systems
(con O. Castaños y A. Frank, 1983) .......................................... 73

Collectivity and geometry I. General approach (1984) ................ 81

Collectivity and geometry II. The two dimensional case
(E. Chacón, P. Hess, M. Moshinsky, 1984) .............................. 91

Collectivity and geometry III. The three-dimensional case
in the Sp(6) ⊃ Sp(2) × O(3) chain for closed shells
(O. Castaños, E. Chacón, M. Moshinsky, 1984) ..................... 103

Geometry of nuclear collective motions (1984) ........................ 115

Analytic expressions for the matrix elements of generators
of Sp(6) in an Sp(6) ⊃ U(3) basis (O. Castaños,
E. Chacón, M. Moshinsky, 1984) ........................................... 123

Accidental degeneracies in the Zeeman effect and the symmetry groups
(con N. Méndez, E. Murow y J. W. B. Hughes, 1984) .............. 131

Pseudoatoms and atoms in strong magnetic fields (con N. Méndez
y E. Murow, 1985) .................................................................... 169

Symmetry constrained bosons and collectivity (1984) ................ 197

Constrained bosons for collective states in open shell nuclei
(con E. Chacón y O. Castaños, 1984) ..................................... 213

Boson realization of sp(4) I. The matrix formulation (O. Castaños,
E. Chacón, M. Moshinsky, C. Quesne, 1985) ........................... 223

Boson realization of symplectic algebras (1985) ..................... 241

Are there boson degrees of freedom in collective shell model
states? (1984) .................................................................... 247

Generating kernel for boson realization of symplectic algebras
(O. Castaños, P. Kramer, M. Moshinsky, 1986) ....................... 261

Boson realization of sp(4, R) II. The generating kernel formulation
(con O. Castaños y P. Kramer, 1986) .................................. 267

Accidental degeneracy and symmetry Lie algebra
(con R. Dirl, 1985) ................................................................ 279

Collectivity and geometry IV. Sp(6) ⊃ Sp(2) × O(3) basis states
for open shells (con M. Nicolescu y R. T. Sharp, 1985) ............. 285

Canonical transformations to action and angle variables and their
representation in quantum mechanics IV. Periodic potentials
(J. Flores, G. López, G. Monsiváis, M. Moshinsky, 1986) .......... 289

Critical analysis of algebraic collective models (1986) ............. 325

The structure of phase space and quantum mechanics (1987) ........ 331

Representation of the generators of symplectic algebras
(E. Chacón, M. Moshinsky, 1987) ............................................. 337

Matrix representation of the generators of symplectic algebras:
I. The case of sp(4, R) (O. Castaños, M. Moshinsky, 1987) ........ 343

Matrix representation of the generators of symplectic algebras:
II. The general case with explicit results for sp(6, R)
(con E. Chacón, 1987) ....................................................... 359

Collectivity and Geometry V. Spectra and shapes in the two-
dimensional case (con E. Chacón, P. O. Hess, 1987) ................ 377

Group theory of the symplectic nuclear model (1988) ................ 395

Relativistic symplectic model for barions (1988) ....................... 405

Stability of deuterons in strong magnetic fields: an exactly
solved model (con G. Loyola, 1988) ........................................ 409

Stability of nuclei in strong magnetic fields (1988) .................. 417

Collectivity and geometry VI. Spectra and shapes in the three
dimensional case (E. Chacón, P. Hess, M. Moshinsky, 1989) ........ 419

Wigner distribution functions and the representation of non-
bijective canonical transformations in quantum mechanics
(R. Dirl, P. Kasperkovitz, M. Moshinsky, 1988) ....................... 431

Collectivity and geometry (1988) ............................................. 443

Las tres caras de la espectroscopía: atómica, nuclear y subnuclear
(con A. Sánchez, 1988) .......................................................... 449

Relativistic symplectic model for scalar-quark systems
(con A. Szczepaniak, 1989) .................................................... 479

Coherent states and accidental degeneracy for a charged
particle in a magnetic field (G. Loyola, M. Moshinsky,
A. Szczepaniak, 1989) ......................................................... 487

Accidental degeneracy and structure of matter in strong
magnetic fields (con G. Loyola y A. Szczepaniak, 1989) ........... 491

The Dirac oscillator (con A. Szczepaniak, 1989) ............................... 503

The two body Dirac oscillator (con G. Loyola y A. Szczepaniak,
1990) ................................................................................. 507

The Dirac oscillator and its contribution to the baryon mass
formula (con G. Loyola, A. Szczepaniak, C. Villegas
y N. Aquino, 1990) ............................................................... 533

Symmetry Lie algebra of the Dirac oscillator (C. Quesne,
M. Moshinsky, 1990) ............................................................. 567



9786077630166


Ciencia

QC776 / M67574