TY - GEN AU - JONES AND BARLETT TI - MULTIVARIABLE CALCULUS SN - 9780763749668 AV - QA303 ITGAM PY - 2011/// CY - USA PB - ZILL WRIGHT KW - Cálculo N1 - Capítulo 9 – Sequences and Series (p. 475) 9.1 Sequences – 476 9.2 Monotonic Sequences – 485 9.3 Series – 490 9.4 Integral Test – 501 9.5 Comparison Tests – 504 9.6 Ratio and Root Tests – 509 9.7 Alternating Series – 512 9.8 Power Series – 519 9.9 Representing Functions by Power Series – 523 9.10 Taylor Series – 529 9.11 Binomial Series – 540 Chapter 9 in Review – 544 ⸻ Capítulo 10 – Conics and Polar Coordinates (p. 547) 10.1 Conic Sections – 548 10.2 Parametric Equations – 560 10.3 Calculus and Parametric Equations – 568 10.4 Polar Coordinate System – 573 10.5 Graphs of Polar Equations – 576 10.6 Calculus in Polar Coordinates – 585 10.7 Conic Sections in Polar Coordinates – 592 Chapter 10 in Review – 597 ⸻ Capítulo 11 – Vectors and 3-Space (p. 601) 11.1 Vectors in 2-Space – 602 11.2 3-Space and Vectors – 608 11.3 Dot Product – 614 11.4 Cross Product – 622 11.5 Lines in 3-Space – 629 11.6 Planes – 634 11.7 Cylinders and Spheres – 640 11.8 Quadric Surfaces – 643 Chapter 11 in Review – 650 ⸻ Capítulo 12 – Vector-Valued Functions (p. 655) 12.1 Vector Functions – 656 12.2 Calculus of Vector Functions – 661 12.3 Motion on a Curve – 668 12.4 Curvature and Acceleration – 673 Chapter 12 in Review – 679 ⸻ Capítulo 13 – Partial Derivatives (p. 681) 13.1 Functions of Several Variables – 682 13.2 Limits and Continuity – 688 13.3 Partial Derivatives – 695 13.4 Linearization and Differentials – 703 13.5 Chain Rule – 711 13.6 Directional Derivative – 718 13.7 Tangent Planes and Normal Lines – 724 13.8 Extrema of Multivariable Functions – 728 13.9 Method of Least Squares – 735 13.10 Lagrange Multipliers – 737 Chapter 13 in Review – 744 ⸻ Capítulo 14 – Multiple Integrals (p. 749) 14.1 The Double Integral – 750 14.2 Iterated Integrals – 753 14.3 Evaluation of Double Integrals – 757 14.4 Center of Mass and Moments – 764 14.5 Double Integrals in Polar Coordinates – 768 14.6 Surface Area – 773 14.7 The Triple Integral – 776 14.8 Triple Integrals in Other Coordinate Systems – 783 14.9 Change of Variables in Multiple Integrals – 790 Chapter 14 in Review – 796 ⸻ Capítulo 15 – Vector Integral Calculus (p. 801) 15.1 Line Integrals – 802 15.2 Line Integrals of Vector Fields – 808 15.3 Independence of the Path – 815 15.4 Green’s Theorem – 824 15.5 Parametric Surfaces and Area – 830 15.6 Surface Integrals – 839 15.7 Curl and Divergence – 845 15.8 Stokes’ Theorem – 851 15.9 Divergence Theorem – 856 Chapter 15 in Review – 863 ⸻ Capítulo 16 – Higher-Order Differential Equations (p. 867) 16.1 Exact First-Order Equations – 868 16.2 Homogenous Linear Equations – 872 16.3 Nonhomogenous Linear Equations – 878 16.4 Mathematical Models – 883 16.5 Power Series Solutions – 891 Chapter 16 in Review – 895; Ingenieria en Gestion Empresarial N2 - Appropriate for the third semester in the college calculus sequence, the Fourth Edition of Multivariable Calculus maintains the student-friendly writing style and robust exercises and problem sets that Dennis Zill is famous for. Ideal as a follow-up companion to Zill's first volume, or as a stand-alone text, this exceptional revision presents the topics typically covered in the traditional third course, including Vector-Valued Functions, Differential Calculus of Functions of Several Variables, Integral Calculus of Functions of Several Variables, Vector Integral Calculus, and an Introduction to Differential Equations ER -