Nonlinear Control / Hassan K. Khalil
Pearson
- 1a. Edicion
- México Pearson 2015
- 399 páginas ilustraciones 23.5 cm.
Fundamentos de Sistemas No Lineales: Modelos, equilibrio, linealización.
Análisis de Estabilidad de Lyapunov: Teoremas, funciones de Lyapunov, estabilidad asintótica.
Control por Retroalimentación de Estado: Linearización por retroalimentación, control de modos deslizantes.
Diseño de Controladores No Lineales: Control robusto, control adaptativo.
Sistemas de Tiempo Discreto No Lineales.
Sistemas Singulares y Teoremas de Perturbación Singular.
Control de Sistemas de Parámetros Variantes en el Tiempo (LTI y LPV).
Diseño Basado en Paso-Atrás (Backstepping).
Teoría del Observador No Lineal.
Sistemas de Conmutación y Salto (Switched Systems and Jump Systems). Examples of Nonlinear Systems: Real-world examples from various fields such as robotics, biology, and economics.
Mathematical Foundations: Basic concepts such as system representation, state-space models, and system dynamics.
Chapter 2: Mathematical Preliminaries Differential Equations: Review of ordinary differential equations (ODEs) that describe nonlinear systems.
Lyapunov Stability Theory: Introduction to Lyapunov's second method for stability analysis.
Nonlinear System Representations: Techniques for representing nonlinear systems and their properties.
Chapter 3: Stability of Nonlinear Systems Lyapunov Stability: In-depth analysis of Lyapunov stability, including local and global stability, asymptotic stability, and exponential stability.
LaSalle's Invariance Principle: A powerful method for analyzing the stability of nonlinear systems.
Practical Stability Analysis: Applying Lyapunov's methods to real-world nonlinear systems.
Chapter 4: Feedback Linearization Concept of Feedback Linearization: The process of transforming nonlinear systems into linear ones using state feedback.
Controllability and Observability: Conditions for feedback linearization, including discussions of system controllability and observability.
Practical Applications: Examples where feedback linearization simplifies control design for nonlinear systems.
Chapter 5: Control Lyapunov Functions Control Lyapunov Functions (CLFs): Using Lyapunov functions to design stabilizing controllers for nonlinear systems.
Design of Stabilizing Controllers: Practical steps for creating controllers that ensure system stability using CLFs.
Example Applications: Application of CLFs in robotic systems and autonomous vehicles.
Chapter 6: Nonlinear Control Design Techniques Sliding Mode Control: Explanation of sliding mode control, a technique for robustly controlling nonlinear systems.
Backstepping Method: A method for systematically designing control laws for nonlinear systems.
Small-Gain Theorem: A tool for analyzing stability and robustness in the presence of nonlinearities.
Chapter 7: Global Asymptotic Stability Global Stabilization: Techniques to achieve global stability for nonlinear systems.
Constructing Global Lyapunov Functions: Methods for developing Lyapunov functions that guarantee global asymptotic stability.
Applications: Global stabilization in practical systems like robotics and aerospace.
Chapter 8: Control in the Presence of Disturbances Robust Control Design: Design strategies for nonlinear systems that remain stable and performant under disturbances.
Input-Output Stability: Analysis of stability from an input-output perspective, especially for systems subject to external disturbances.
Disturbance Rejection: Strategies for rejecting disturbances in practical nonlinear systems.
Chapter 9: Control of Underactuated Systems Underactuated Systems: Introduction to systems with fewer actuators than degrees of freedom (common in robotics, aerospace, etc.).
Control Strategies for Underactuated Systems: Techniques for stabilizing and controlling such systems despite limited actuation.
Examples: Application to systems like helicopters, drones, and bipedal robots.
Chapter 10: Applications of Nonlinear Control Robotic Systems: Application of nonlinear control strategies in robotics, including trajectory tracking and stabilization.
Aerospace Systems: Nonlinear control in the context of aircraft, spacecraft, and satellite systems.
Automobile Systems: Application of nonlinear control in advanced driver assistance systems (ADAS) and autonomous vehicles.
Biological Systems: Use of nonlinear control in biological models and processes, such as in cell biology or metabolic networks.
Chapter 11: Advanced Topics Nonlinear Systems with Time-Delays: Analysis and control of nonlinear systems that involve time delays.
H-infinity Control for Nonlinear Systems: Advanced methods for robust control using the H-infinity approach in nonlinear systems.
Passivity-Based Control: Control design based on the passivity property of systems to achieve stability and robustness.
Appendices Mathematical Tools: A review of key mathematical tools used throughout the book, including matrix theory, differential equations, and control theory.
Bibliography: References to seminal and recent research papers and textbooks in the field of nonlinear control.
"Nonlinear Control" de Hassan K. Khalil es una obra fundamental que ofrece una introducción rigurosa y completa a la teoría de control no lineal. El autor aborda desde los conceptos básicos de los sistemas no lineales hasta técnicas avanzadas de análisis de estabilidad y diseño de controladores, como la linealización por retroalimentación, el control de modos deslizantes y el diseño basado en Lyapunov. El libro se distingue por su enfoque claro y sistemático, proporcionando las herramientas matemáticas y conceptuales necesarias para entender y resolver problemas complejos en sistemas de control no lineales. Es un recurso indispensable para quienes buscan profundizar en esta área de la ingeniería de control.