Calculo Diferencial E integral
Material type:
TextLanguage: Español Series: calPublication details: México Mc. Graw Hill 1991Edition: 3ra. ediciónDescription: 570 pagISBN: - 9701000501
- QA303 A97
| Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|---|
|
|
CI Gustavo A. Madero Sala General | Colección General | QA303 A97 1991 | EJ. 1 | Available | 01201Q |
Prólogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l. Valor absoluto; sistemas lineales de coordenadas; desigualdades . . . . . . . . . . . . . . . . . . . 2. El sistema rectangular de coordenadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Rectas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Círculos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Ecuaciones y sus gráficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Funciones .................. ~ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. Límites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. Continuidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. La derivada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10. Reglas de derivación ......· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. Derivación implícita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12. Tangentes y normales ...................................... , . . . . . . . . . . . . . . . . . 13. Valores máximos y mínimos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. Problemas de aplicación de máximos y mínimos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. Movimiento rectilíneo y movimiento circular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16. Razones de cambio (o ritmos) relacionadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. Derivación de funciones trigonométricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18. Derivación de las funciones trigonométricas inversas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. Derivación de funciones exponenciales y logarítmicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20. Derivación de las funciones hiperbólicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21. Representación paramétrica de curvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. Curvatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23. Vectores en el plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. Movimiento curvilíneo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25. Coordenadas polares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26. El teorema de la media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27. Formas indeterminadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28. Diferenciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29. Trazado de curvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30. Fórmulas fundamentales de integración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31. Integración por partes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32. Integrales trigonométricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33. Sustituciones trigonométricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34. Integración por fracciones simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sustituciones diversas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integración de funciones hiperbólicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aplicaciones de las integrales indefinidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . La integral definida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Areas planas por integración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Funciones logarítmicas y exponenciales; crecimiento y decrecimiento exponencial . . . . Volúmenes de sólidos de revolución . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volúmenes de sólidos con secciones conocidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Centroides de áreas planas y sólidos de revolución . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Momentos de inercia de áreas planas y sólidos de revolución . . . . . . . . . . . . . . . . . . . . . Presión de un fluido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47. Longitud de arco............................................................ 48. Area de una superficie de revolución . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49. Centroides y momentos de inercia de arcos y superficies de revolución . . . . . . . . . . . . . 50. Area plana y centroide de un área en coordenadas polares........................ 51. Area de una superficie de revolución en coordenadas polares . . . . . . . . . . . . . . . . . . . . . . 52. Integrales impropias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53. Sucesiones infinitas y series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54. Criterios para la convergencia y divergencia de series positivas . . . . . . . . . . . . . . . . . . . . 55. Series con términos negativos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56. Cálculo con series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57. Serie de potencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58. Desarrollos de funciones en serie de potencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59. Fórmulas de Maclaurin y Taylor con resto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60. Cálculos con series de potencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61. Integración aproximada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62. Derivadas parciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63. Diferenciales totales y derivadas totales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64. Funciones implícitas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65. Vectores en el espacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66. Curvas y superficies en el espacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67. Derivadas direccionales; máximos y mínimos.................................... 68. Derivación e integración de vectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69. Integrales dobles e iteradas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70. Centroides y momentos de inercia de áreas planas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71. Volumen bajo una superficie por integración doble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72. Area de una superficie por integración doble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73. Integrales triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74. Masas de densidad variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75. Ecuaciones diferenciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76. Ecuaciones diferenciales de segundo orden . . . . . .
Ingeniería Ambiental
There are no comments on this title.


















