MARC details
| 000 -CABECERA |
| campo de control de longitud fija |
06031 a2200229 4500 |
| 008 - DATOS DE LONGITUD FIJA--INFORMACIÓN GENERAL |
| campo de control de longitud fija |
250318s########|||||||||||||||||||||||#d |
| 020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
| International Standard Book Number |
0070226253 |
| 040 ## - FUENTE DE CATALOGACIÓN |
| Centro catalogador/agencia de origen |
GAMADERO2 |
| Lengua de catalogación |
Español |
| Centro/agencia transcriptor |
GAMADERO2 |
| 100 ## - ENTRADA PRINCIPAL--NOMBRE DE PERSONA |
| Nombre de persona |
K.sFu-R.C Gonzalez- C.S.G. Lee |
| 245 ## - MENCIÓN DEL TÍTULO |
| Título |
Robotics,Control,sensing,Vision,and Intelligence / |
| 250 ## - MENCION DE EDICION |
| Mención de edición |
1 |
| 260 ## - PUBLICACIÓN, DISTRIBUCIÓN, ETC. |
| Nombre del editor, distribuidor, etc. |
Mc Graw hill |
| 300 ## - DESCRIPCIÓN FÍSICA |
| Extensión |
580 páginas |
| Otras características físicas |
Ilustraciones, Tablas y Gráficas |
| Dimensiones |
21.5 cm x 14.8 cm |
| 504 ## - NOTA DE BIBLIOGRAFÍA, ETC. |
| Nota de bibliografía, etc. |
Incluye Referencias Bibliográficas |
| 505 ## - NOTA DE CONTENIDO CON FORMATO |
| Nota de contenido con formato |
Preface<br/><br/>1. Introduction<br/><br/>1.1. Background<br/><br/>1.2 Historical Development<br/><br/>13 Robot Arm Kinematics and Dynamics<br/><br/>1.4 Manipulator Trajectory Planning<br/><br/>and Motion Control<br/><br/>1.5 Robot Sensing<br/><br/>1.6 Robot Programming Languages<br/><br/>1.7 Machine Intelligence<br/><br/>1.8 References<br/><br/>2. Robot Arm Kinematics<br/><br/>2.2<br/><br/>2.1 Introduction<br/><br/>12<br/><br/>2.2 The Direct Kinematics Problem<br/><br/>13<br/><br/>2.3. The Inverse Kinematics Solution<br/><br/>52<br/><br/>2.4. Concluding Remarks<br/><br/>75<br/><br/>76<br/><br/>References<br/><br/>76<br/><br/>Problems<br/><br/>3. Robot Arm Dynamics<br/><br/>3.1 Introduction<br/><br/>3.2 Lagrange-Euler Formulation<br/><br/>3.3. Newton-Euler Formation<br/><br/>3.4 Generalized D'Alembert Equations of Motion<br/><br/>3.5. Concluding Remarks<br/><br/>References.<br/><br/>Problems<br/><br/>vii<br/><br/>4. Planning of Manipulator Trajectories<br/><br/>41. Introduction<br/><br/>4.2 General Considerations on Trajectory Planning<br/><br/>4.3 Joint-interpolated Trajectories<br/><br/>4.4. Planning of Manipulator Cartesian<br/><br/>Path Trajectories<br/><br/>4.5. Concluding Remarks<br/><br/>References<br/><br/>Problems<br/><br/>5. Control of Robot Manipulators<br/><br/>5.1. Introduction<br/><br/>5.2. Control of the Puma<br/><br/>203<br/><br/>Robot Arm<br/><br/>205<br/><br/>5.3. Computed Torque Technique<br/><br/>5.4 Near-Minimum-Time Control<br/><br/>223<br/><br/>5.5. Variable Structure Control<br/><br/>226<br/><br/>5.6. Nonlinear Decoupled Feedback<br/><br/>Control<br/><br/>227<br/><br/>5.7. Resolved Motion Control<br/><br/>232<br/><br/>5.8. Adaptive Control<br/><br/>244<br/><br/>5.9. Concluding Remarks<br/><br/>263<br/><br/>References<br/><br/>265<br/><br/>Problems<br/><br/>265<br/><br/>6. Sensing<br/><br/>267<br/><br/>6.1 Introduction<br/><br/>267<br/><br/>6.2. Range Sensing<br/><br/>268<br/><br/>6.3. Proximity Sensing<br/><br/>276<br/><br/>6.4. Touch Sensors<br/><br/>284<br/><br/>6.5. Force and Torque Sensing<br/><br/>6.6. Concluding Remarks<br/><br/>289<br/><br/>293<br/><br/>References<br/><br/>Problems<br/><br/>293<br/><br/>293<br/><br/>7. Low-Level Vision<br/><br/>71. Introduction<br/><br/>296<br/><br/>7.2 Image Acquisition<br/><br/>Dimary MA Jюбоя<br/><br/>296<br/><br/>7.3. Illumination Techniques<br/><br/>7.4. Imaging Geometry<br/><br/>Some Basic Relationships Between Pixels E<br/><br/>307<br/><br/>328<br/><br/>7.6. Preprocessing 7.5.<br/><br/>7.7. Concluding Remarks<br/><br/>331<br/><br/>References<br/><br/>359<br/><br/>Problems<br/><br/>360<br/><br/>cealdong<br/><br/>360<br/><br/>8. Higher-Level Vision<br/><br/>81 Introduction<br/><br/>362<br/><br/>362<br/><br/>363<br/><br/>8.2 Segmentation<br/><br/>395<br/><br/>8.3 Description<br/><br/>8.4 Segmentation and Description of Three-Dimensional Structures<br/><br/>424<br/><br/>8.5 Recognition<br/><br/>439<br/><br/>8.6 Interpretation<br/><br/>8.7. Concluding Remarks<br/><br/>445<br/><br/>References<br/><br/>447<br/><br/>Problems<br/><br/>9. Robot Programming Languages<br/><br/>450<br/><br/>9.1. Introduction<br/><br/>9.2 Characteristics of Robot<br/><br/>451<br/><br/>Level Languages<br/><br/>9.3 Characteristics of Task-<br/><br/>462<br/><br/>Level Languages<br/><br/>470<br/><br/>9.4. Concluding Remarks<br/><br/>472<br/><br/>References<br/><br/>473<br/><br/>Problems<br/><br/>10. Robot Intelligence and Task Planning<br/><br/>474<br/><br/>10.1 Introduction<br/><br/>474<br/><br/>10.2. State Space Search<br/><br/>484<br/><br/>10.3. Problem Reduction<br/><br/>489<br/><br/>10.4 Use of Predicate Logic<br/><br/>10.5. Means-Ends Analysis<br/><br/>493<br/><br/>10.6. Problem-Solving<br/><br/>497<br/><br/>10.7 Robot Learning<br/><br/>10.8. Robot Task Planning<br/><br/>10.9. Basic Problems in Task Planning<br/><br/>509<br/><br/>10.10. Expert Systems and Knowledge Engineering<br/><br/>516<br/><br/>10.11 Concluding Remarks References<br/><br/>519<br/><br/>520<br/><br/>Appendix<br/><br/>A Vectors and Matrices<br/><br/>B Manipulator Jacobian<br/><br/>Bibliography<br/><br/>Index<br/> |
| 520 ## - RESUMEN, ETC. |
| Resumen, etc. |
1.1 BACKGROUND<br/><br/>With a pressing need for increased productivity and the delivery of end products of uniform quality, industry is turning more and more toward computer-based auto-mation. At the present time, most automated manufacturing tasks are carried out by special-purpose machines designed to perform predetermined functions in a manufacturing process. The inflexibility and generally high cost of these machines, often called hard automation systems, have led to a broad-based interest in the use of robots capable of performing a variety of manufacturing functions in a more flexible working environment and at lower production costs<br/><br/>The word robot originated from the Czech word robota, meaning work. Webster's dictionary defines robot as "an automatic device that performs functions ordinarily ascribed to human beings With this definition, washing machines may be considered robots A definition used by the Robot Institute of America gives a more precise description of industrial robots: "A robot is a reprogrammable multi-functional manipulator designed to move materials, parts, tools, or special-ized devices, through variable programmed motions for the performance of a variety of tasks." In short, a robot is a reprogrammable general-purpose manipu-lator with external sensors that can perform various assembly tasks. With this definition, a robot must possess intelligence, which is normally due to computer algorithms associated with its control and sensing systems.<br/><br/>An industrial robot is a general-purpose, computer-controlled manipulator con-sisting of several rigid links connected in series by revolute or prismatic joints One end of the chain is attached to a supporting base, while the other end is free and equipped with a tool to manipulate objects or perform assembly tasks. The motion of the joints results in relative motion of the links Mechanically, a robot is composed of an arm (or mainframe) and a wrist subassembly plus a tool. It is designed to reach a workpiece located within its work volume. The work volume is the sphere of influence of a robot whose arm can deliver the wrist subassembly unit to any point within the sphere. The arm subassembly generally can move with three degrees of freedom |
| 942 ## - ELEMENTOS DE ENTRADA SECUNDARIOS (KOHA) |
| Tipo de ítem Koha |
Libro |
| Fuente del sistema de clasificación o colocación |
Clasificación Decimal Dewey |
| 945 ## - CATALOGADORES |
| Número del Creador del Registro |
1 |
| Nombre del Creador del Registro |
admin |
| Número de último modificador del registro |
1261 |
| Nombre del último modificador del registro |
Jenny Viridiana Quiroz Linares |